

Oxidative treatment of pharmaceutical residues using thermal plasma activation

Martien H.F. Graumans

Radboudumc, Radboud Institute for Health Sciences

17 November 2020

MEDUWinar 17 November 2020

Introduction

- Widespread usage of pharmaceuticals
 - Veterinary and human use
- Emission via direct and indirect routes
- Conventional sewage treatment plants (STPs)
 - Sedimentation
 - Biodegradation
 - Filtration

Aim of the study

- Prevention and mitigation of wastewater contamination by pharmaceuticals
- Onsite oxidative treatment of wastewater
 - Plasma Activated Water (PAW)
 - Laboratory simulation on different matrices
- Toxicity Assay
 - Effect of formed degradation products

Selection of priority substances

- MEDUWA consortium -> Taskforce
 - Shortlist as guidence
- Selection criteria:
 - Measurements in Vechte basin
 - Consumption
 - Biodegradation
 - Toxicity
- Shortlist 14 compounds:

Antibiotics, anti-epilepticum, cytostatic, contrast agents, analgesic and anti-diabatic

Plasma activation optimisation

PAW Lab Unit (150 Watt)

Applied laboratory methodology

1a) Simulation Matrices

1b) Hospital sewage water

Oxidative degradation simultation matrices

- Tap Water
- Synthetic Urine
- Urine
- Synthetic Sewage Water
- Hospital Sewage Water

Organic compounds => absorb UV light Metabolites/hormones etc.

Scavenging effect (secondary radicals):

•OH + Cl⁻ \rightarrow HOCl⁻⁻ •OH + NH₃ \rightarrow NH₂ + H₂O

Detection of medicines in sewage water

Hospital sewage water (A) Monday – Thursday (16 - 19 Sep 2019) x̄ Concentration (μg/L) (±sd) n = 4											
IOM	DIA	CIP	FLU	DF	MET	СР	СВ	APAP	MF		
2425.4 (±90.3)	12.6 (±1.6)	13.2 (±2.8)	0.35 (±0.03)	1.1 (±0.5)	1.9 (±0.5)	0.2 (±0.1)	0.36	293.9 (±64.4)	33.02 (±4.2)		
Domestic sewage water (B) Thursday (31 Oct 2019) x̄ Concentration (μg/L) (±sd) n = 4											
IOM	DIA	CIP	FLU	DF	MET	СР	СВ	APAP	MF		
n.d.	n.d.	1.1 (±0.5)	0.7 (±0.4)	5.8 (±4.7)	2.5 (±0.7)	n.d.	1.9 (±0.7)	482.9 (±286.2)	76.4 (±30.0)		

Compounds used in the hospital

Prescription drugs

Over-the-counter drugs

Oxidative degradation hospital sewage water matrix

AOP	Total Conc. (μg/L)	Total Ř (%)	Total Conc. w/o X-ray	Total Ř (%) w/o X-ray
PAW 150W _{Start}	2782.1	-	344.1	
End _{120 min}	1624.7	41.6	11.2	96.7
UV-C/H ₂ O _{2 Start}	2881.9	-	371.8	
End _{120 min}	248.5	91.4	248.3	33.2

Complex matrix

- Presence of soaps, detergents, metabolites and hormones
- Non-detected conversion products
 - Reformed into pristine structures
- RONS are continuously produced (With Plasma)
 - Contrast Agents are light sensitive
 - Iodine functional groups hinder the availability of unsaturated C-atoms during radical attack

Cytotoxicity-Assay

- HELA-cell line -> Epithelial uterus cells
- 20 μL oxidative treated sample in 180 μL medium
 - Cells were 24H and 48H exposed
- CM-H₂DCFDA (Fluorescence) → Oxidative stress
- 0.5% (v/v) Crystalviolet → Biomass
- Positive control with Hydrogen Peroxide
 - 500 μ M = appropiate

<Titel van de presentatie>

Treated synthetic sewage water

- Hospital sewage water simulation
 - 10 compounds
 - 150 W plasma
 - UV-C/H₂O₂
- No HELA-cell death was observed after oxidative treatment applications
- Cell recovery

Conclusions

- Distinct efficiency between oxidative treatment techniques
- Certain molecules are completely removed with PAW other with UV-C/H₂O₂
 - Oxidation by hydroxyl radicals or degradation with reactive nitrogen species
- Complexity of the matrix influences the degradation
- Current cell toxicity assay set-up works technically well
 - No signficant toxicity observed compared
- Additional oxidation technique
 - To complement wastewater treatment

Acknowlegdements

F.G.M. Russel², W.F.L.M. Hoeben³, M.F.P. van Dael¹, R.B.M. Anzion¹, H. van Hove², P.H.M. Leenders⁴, P.T.J. Scheepers¹

¹Radboud Institute for Health Sciences, Radboudumc, ²Radboud Insitute for Molecular Life Sciences, Radboudumc, ³Department of Electrical Energy Systems, Eindhoven University of Technology, ⁴VitalFluid b.v.

Radboudumc

MEDUWinar 17 November 2020